Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
4.
J Virol ; 97(4): e0183322, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971561

RESUMEN

Noroviruses are the leading cause of outbreaks of acute gastroenteritis. These viruses usually interact with histo-blood group antigens (HBGAs), which are considered essential cofactors for norovirus infection. This study structurally characterizes nanobodies developed against the clinically important GII.4 and GII.17 noroviruses with a focus on the identification of novel nanobodies that efficiently block the HBGA binding site. Using X-ray crystallography, we have characterized nine different nanobodies that bound to the top, side, or bottom of the P domain. The eight nanobodies that bound to the top or side of the P domain were mainly genotype specific, while one nanobody that bound to the bottom cross-reacted against several genotypes and showed HBGA blocking potential. The four nanobodies that bound to the top of the P domain also inhibited HBGA binding, and structural analysis revealed that these nanobodies interacted with several GII.4 and GII.17 P domain residues that commonly engaged HBGAs. Moreover, these nanobody complementarity-determining regions (CDRs) extended completely into the cofactor pockets and would likely impede HBGA engagement. The atomic level information for these nanobodies and their corresponding binding sites provide a valuable template for the discovery of additional "designer" nanobodies. These next-generation nanobodies would be designed to target other important genotypes and variants, while maintaining cofactor interference. Finally, our results clearly demonstrate for the first time that nanobodies directly targeting the HBGA binding site can function as potent norovirus inhibitors. IMPORTANCE Human noroviruses are highly contagious and a major problem in closed institutions, such as schools, hospitals, and cruise ships. Reducing norovirus infections is challenging on multiple levels and includes the frequent emergence of antigenic variants, which complicates designing effective, broadly reactive capsid therapeutics. We successfully developed and characterized four norovirus nanobodies that bound at the HBGA pockets. Compared with previously developed norovirus nanobodies that inhibited HBGA through disrupted particle stability, these four novel nanobodies directly inhibited HBGA engagement and interacted with HBGA binding residues. Importantly, these new nanobodies specifically target two genotypes that have caused the majority of outbreaks worldwide and consequently would have an enormous benefit if they could be further developed as norovirus therapeutics. To date, we have structurally characterized 16 different GII nanobody complexes, a number of which block HBGA binding. These structural data could be used to design multivalent nanobody constructs with improved inhibition properties.


Asunto(s)
Antígenos de Grupos Sanguíneos , Norovirus , Anticuerpos de Dominio Único , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Norovirus/efectos de los fármacos , Norovirus/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Sitios de Unión/efectos de los fármacos , Reacciones Cruzadas , Termodinámica , Cristalografía por Rayos X , Dominios Proteicos , Unión Proteica , Modelos Moleculares
5.
J Virol ; 96(22): e0121722, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326275

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) typically causes a fatal disease in rabbits. In Australia, RHDV was imported to control the feral rabbit population, while it poses a severe threat to native rabbits in other countries. RHDV variants are genetically diverse and serological studies using antibodies isolated from infected rabbits or raised against RHDV virus-like particles (VLPs) have found RHDV variants antigenically distinct. In this study, we determined the X-ray crystal structure of an RHDV GI.2 (N11 strain) protruding (P) domain in complex with a diagnostic monoclonal antibody (2D9) Fab. We showed that 2D9 interacted with conserved and variable residues on top of the P domain with nanomolar affinity. To better illustrate 2D9 specificity, we determined the X-ray crystal structure of an RHDV GI.1b (Ast89 strain) that was a 2D9 non-binder. Structural analysis indicated that amino acid substitutions on the GI.1b P domain likely restricted 2D9 binding. Interestingly, a model of the GI.2 P domain-Fab complex superimposed onto a cryo-EM structure of an RHDV VLP revealed that 2D9 Fab molecules clashed with neighboring Fabs and indicated that there was a reduced antibody binding occupancy. Moreover, the RHDV GI.2 histo-blood group antigen (HBGA) co-factor binding site appeared obstructed when 2D9 was modeled on the VLP and suggested that 2D9 might also function by blocking HBGA attachment. Overall, this new data provides the first structural basis of RHDV antibody specificity and explains how amino acid variation at the binding site likely restricts 2D9 cross-reactivity. IMPORTANCE Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b. This novel structural information provides a framework for understanding how RHDV displays a specific antigenic epitope and engages an antibody at the atomic level. Importantly, part of the 2D9 binding region was earlier reported to contain a neutralizing epitope and our structural modeling as well as recent human norovirus antibody-mediated neutralization studies, suggest that the 2D9 antibody has the potential to block HBGA attachment. These new findings should aid in characterizing antigenic variants and advance the development of novel monoclonal antibodies for diagnostics and therapeutics.


Asunto(s)
Especificidad de Anticuerpos , Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Antígenos de Grupos Sanguíneos/metabolismo , Infecciones por Caliciviridae/veterinaria , Epítopos/metabolismo
6.
Sci Rep ; 12(1): 8116, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581271

RESUMEN

Norovirus is the most important cause of acute gastroenteritis, yet there are still no antivirals, vaccines, or treatments available. Several studies have shown that norovirus-specific monoclonal antibodies, Nanobodies, and natural extracts might function as inhibitors. Therefore, the objective of this study was to determine the antiviral potential of additional natural extracts, honeys, and propolis samples. Norovirus GII.4 and GII.10 virus-like particles (VLPs) were treated with different natural samples and analyzed for their ability to block VLP binding to histo-blood group antigens (HBGAs), which are important norovirus co-factors. Of the 21 natural samples screened, date syrup and one propolis sample showed promising blocking potential. Dynamic light scattering indicated that VLPs treated with the date syrup and propolis caused particle aggregation, which was confirmed using electron microscopy. Several honey samples also showed weaker HBGA blocking potential. Taken together, our results found that natural samples might function as norovirus inhibitors.


Asunto(s)
Miel , Norovirus , Extractos Vegetales , Própolis , Antivirales/uso terapéutico , Antígenos de Grupos Sanguíneos/metabolismo , Gastroenteritis/terapia , Humanos , Norovirus/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Própolis/farmacología
7.
Virology ; 553: 23-34, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33202318

RESUMEN

Human norovirus virus-like particles (VLPs) are assumed to be morphologically and antigenically similar to virion particles. The norovirus virion is assembled from 180 copies of the capsid protein (VP1) and exhibits T = 3 icosahedral symmetry. In this study, we showed that the vaccine candidate GII.4c VP1 formed T = 1 and T = 3 VLPs, but mainly assembled into T = 4 icosahedral particles that were composed of 240 VP1 copies. In contrast, another clinically important genotype, GII.17, almost exclusively folded into T = 3 VLPs. Interestingly, the GII.4c T = 1 particles had higher binding capacities to norovirus-specific Nanobodies than to GII.4c T = 3 and T = 4 particles. Our data indicated that the occluded Nanobody-binding epitopes on the T = 1 particles were more accessible compared to the larger T = 3 and T = 4 particles. Overall, this new data revealed that GII.4c VLPs had a preference for forming the T = 4 icosahedral symmetry and future studies with varied sized norovirus VLPs should take caution when examining antigenicity.


Asunto(s)
Norovirus/inmunología , Vacunas de Partículas Similares a Virus/ultraestructura , Vacunas Virales , Animales , Antígenos Virales/inmunología , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Epítopos , Células HEK293 , Humanos , Norovirus/química , Norovirus/genética , Células Sf9 , Anticuerpos de Dominio Único/inmunología , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología
8.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321816

RESUMEN

Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.


Asunto(s)
Infecciones por Caliciviridae/terapia , Norovirus/genética , Anticuerpos de Dominio Único/farmacología , Sitios de Unión/genética , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Epítopos/metabolismo , Gastroenteritis/metabolismo , Norovirus/inmunología , Norovirus/patogenicidad , Unión Proteica/genética , Conformación Proteica , Dominios Proteicos/genética , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Virión/metabolismo
9.
Antiviral Res ; 168: 175-182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145925

RESUMEN

Human noroviruses are a leading cause of acute gastroenteritis, yet there are still no vaccines or antivirals available. Expression of the norovirus capsid protein (VP1) in insect cells typically results in the formation of virus-like particles (VLPs) that are morphologically and antigenically comparable to native virions. Indeed, several different norovirus VLP candidates are currently used in clinical trials. So far, structural analysis of norovirus VLPs showed that the capsid has a T = 3 icosahedral symmetry and is composed of 180 copies of VP1 that are folded into three quasi-equivalent subunits (A, B, and C). In this study, the VLP structures of two norovirus GII.4 genetic variants that were identified in 1974 and 2012 were determined using cryo-EM. Surprisingly, we found that greater than 95% of these GII.4 VLPs were larger than virions and 3D reconstruction showed that these VLPs exhibited T = 4 icosahedral symmetry. We also discovered that the T = 4 VLPs presented several novel structural features. The T = 4 particles assembled from 240 copies of VP1 that adopted four quasi-equivalent conformations (A, B, C, and D) and formed two distinct dimers, A/B and C/D. The protruding domains were elevated ∼21 Šoff the capsid shell, which was ∼7 Šmore than in the previously studied GII.10 T = 3 VLPs. A small cavity and flap-like structure at the icosahedral two-fold axis disrupted the contiguous T = 4 shell. Overall, our findings indicated that GII.4 VP1 sequences assemble into T = 4 VLPs and these larger particles might have important consequences for VLP-based vaccine development.


Asunto(s)
Proteínas de la Cápside/genética , Norovirus/genética , Norovirus/ultraestructura , Secuencia de Aminoácidos , Animales , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/química , Línea Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Expresión Génica , Variación Genética , Humanos , Insectos , Norovirus/química , Norovirus/fisiología , Virión/química , Virión/genética , Virión/ultraestructura , Ensamble de Virus
10.
Acta Crystallogr D Struct Biol ; 75(Pt 5): 498-504, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063152

RESUMEN

Bovine meat and milk factors (BMMFs) are circular, single-stranded episomal DNAs that have been detected in bovine meat and milk products. BMMFs are thought to have roles in human malignant and degenerative diseases. BMMFs encode a replication initiator protein (Rep) that is actively transcribed and translated in human cells. In this study, a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Šresolution using X-ray crystallography. The overall structure of the MSBI1.176 WH1 domain was remarkably similar to other Rep structures, despite having a low (28%) amino-acid sequence identity. The MSBI1.176 WH1 domain contained elements common to other Reps, including five α-helices, five ß-strands and a hydrophobic pocket. These new findings suggest that the MSBI1.176 Rep might have comparable roles and functions to other known Reps of different origins.


Asunto(s)
Encéfalo/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Esclerosis Múltiple/metabolismo , Plásmidos/aislamiento & purificación , Plásmidos/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia
11.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602609

RESUMEN

Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2'FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2'FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2'FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2'FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2'FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup.IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2'FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Norovirus/inmunología , Anticuerpos de Dominio Único/inmunología , Sitios de Unión/inmunología , Antígenos de Grupos Sanguíneos/inmunología , Cápside/inmunología , Proteínas de la Cápside/inmunología , Cristalografía por Rayos X/métodos , Epítopos/inmunología , Escherichia coli/virología , Unión Proteica/inmunología
12.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541855

RESUMEN

Temporal changes in the GII.4 human norovirus capsid sequences occasionally result in the emergence of genetic variants capable of causing new epidemics. The persistence of GII.4 is believed to be associated with the recognition of numerous histo-blood group antigen (HBGA) types and antigenic drift. We found that one of the earliest known GII.4 isolates (in 1974) and a more recent epidemic GII.4 variant (in 2012) had varied norovirus-specific monoclonal antibody (MAb) reactivities but similar HBGA binding profiles. To better understand the binding interaction of one MAb (10E9) that had varied reactivity with these GII.4 variants, we determined the X-ray crystal structure of the NSW-2012 GII.4 P domain 10E9 Fab complex. We showed that the 10E9 Fab interacted with conserved and variable residues, which could be associated with antigenic drift. Interestingly, the 10E9 Fab binding pocket partially overlapped the HBGA pocket and had direct competition for conserved HBGA binding residues (i.e., Arg345 and Tyr444). Indeed, the 10E9 MAb blocked norovirus virus-like particles (VLPs) from binding to several sources of HBGAs. Moreover, the 10E9 antibody completely abolished virus replication in the human norovirus intestinal enteroid cell culture system. Our new findings provide the first direct evidence that competition for GII.4 HBGA binding residues and steric obstruction could lead to norovirus neutralization. On the other hand, the 10E9 MAb recognized residues flanking the HBGA pocket, which are often substituted as the virus evolves. This mechanism of antigenic drift likely influences herd immunity and impedes the possibility of acquiring broadly reactive HBGA-blocking antibodies.IMPORTANCE The emergence of new epidemic GII.4 norovirus variants is thought to be associated with changes in antigenicity and HBGA binding capacity. Here, we show that HBGA binding profiles remain unchanged between the 1974 and 2012 GII.4 variants, whereas these variants showed various levels of reactivity against a panel of GII.4 MAbs. We identified a MAb that bound at the HBGA pocket, blocked norovirus VLPs from binding to HBGAs, and neutralized norovirus virions in the cell culture system. Raised against a GII.4 2006 strain, this MAb was unreactive to a GII.4 1974 isolate but was able to neutralize the newer 2012 strain, which has important implications for vaccine design. Altogether, these new findings suggest that the amino acid variations surrounding the HBGA pocket lead to temporal changes in antigenicity without affecting the ability of GII.4 variants to bind HBGAs, which are known cofactors for infection.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Variación Antigénica/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Norovirus/inmunología , Secuencia de Aminoácidos/genética , Variación Antigénica/genética , Sitios de Unión/genética , Sitios de Unión/inmunología , Sitios de Unión de Anticuerpos/inmunología , Infecciones por Caliciviridae/inmunología , Cápside/inmunología , Línea Celular , Cristalografía por Rayos X , Humanos , Inmunidad Colectiva/genética , Inmunidad Colectiva/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Modelos Moleculares , Norovirus/genética , Conformación Proteica , Alineación de Secuencia
13.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30355683

RESUMEN

A recently developed human norovirus cell culture system revealed that the presence of bile enhanced or was an essential requirement for the growth of certain genotypes. Before this discovery, histo-blood group antigens (HBGAs) were the only well-studied cofactor known for human noroviruses, and there was evidence that several genotypes poorly bound HBGAs. Therefore, the purpose of this study was to investigate how human norovirus capsids interact with bile acids. We found that bile acids had low-micromolar affinities for GII.1, GII.10, and GII.19 capsids but did not bind GI.1, GII.3, GII.4, or GII.17. We showed that bile acid bound at a partially conserved pocket on the norovirus capsid-protruding (P) domain using X-ray crystallography. Amino acid sequence alignment and structural analysis delivered an explanation of selective bile acid binding. Intriguingly, we discovered that binding of the bile acid was the critical step to stabilize several P domain loops that optimally placed an essential amino acid side chain (Asp375) to bind HBGAs in an otherwise HBGA nonbinder (GII.1). Furthermore, bile acid enhanced HBGA binding for a known HBGA binder (GII.10). Altogether, these new data suggest that bile acid functions as a loop-stabilizing regulator and enhancer of HBGA binding for certain norovirus genotypes.IMPORTANCE Given that human norovirus virions likely interact with bile acid during a natural infection, our evidence that an HBGA nonbinder (GII.1) can be converted to an HBGA binder after bile acid binding is of major significance. Our data provide direct evidence that, like HBGAs, bile acid interaction on the capsid is an important cofactor for certain genotypes. However, more unanswered questions seem to arise from these new discoveries. For example, is there an association between the bile acid requirement and the prevalence of certain genotypes? That is, the GII.1 and GII.10 (bile acid binders) genotypes rarely caused outbreaks, whereas the GII.4 and GII.17 genotypes (bile acid nonbinders) were responsible for large epidemics. Therefore, it seems plausible that certain genotypes require bile acids, whereas others have modified their bile acid requirements on the capsid.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas de la Cápside/metabolismo , Cápside/química , Sitios de Unión , Cápside/metabolismo , Proteínas de la Cápside/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Norovirus , Unión Proteica , Conformación Proteica , Estabilidad Proteica
14.
Biomacromolecules ; 19(9): 3714-3724, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30071731

RESUMEN

Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.


Asunto(s)
Antivirales/síntesis química , Proteínas de la Cápside/metabolismo , Fucosa/química , Norovirus/efectos de los fármacos , Antivirales/farmacología , Proteínas de la Cápside/química , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica
15.
J Biol Chem ; 293(30): 11955-11965, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29858242

RESUMEN

There is agreement with respect to norovirus infection routes in humans regarding binding of the pathogen to gastrointestinal epithelia via recognition of blood group-active mucin-typeO-glycans as the initiating and essential event. Among food additives playing a potential role in applications to protect newborns, human milk oligosaccharides (HMOs) as competitors are of major importance. By focusing on fractions of high-molecular mass HMOs with high fucose contents, we attempted to identify the structural elements required for norovirus GII.4 (Sydney 2012, JX459908) capsid binding in neoglycolipid-based arrays. We provide evidence that HMO fractions with the strongest binding capacities contained hepta- to decasaccharides expressing branches with terminal blood group H1 or Lewis-b antigen. H2 antigen, as recognized by UEA-I lectin, is apparently not expressed in high-mass HMOs. Beyond affinity, sterical and valency effects contribute more to virus-like particle binding, as revealed for oligovalent fucose conjugates of α-cyclodextrin and oligofucoses from fucoidan. Accordingly, high-mass HMOs with oligovalent fucose can exhibit stronger binding capacities compared with monovalent fucose HMOs. The above features were revealed for the most clinically relevant and prevalent GII.4 strain and are distinct from other strains, like GII.10 (Vietnam 026, AF504671), which showed a preference for blood group Lewis-a positive glycans.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Fucosa/inmunología , Leche Humana/inmunología , Norovirus/inmunología , Oligosacáridos/inmunología , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/inmunología , Fucosa/química , Humanos , Inmunidad Innata , Leche Humana/química , Mucinas/química , Mucinas/inmunología , Norovirus/fisiología , Oligosacáridos/química , Polisacáridos/química , Polisacáridos/inmunología , Acoplamiento Viral
16.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563286

RESUMEN

Human noroviruses are the leading cause of acute gastroenteritis in humans. Noroviruses also infect animals, such as cows, mice, cats, and dogs. How noroviruses bind and enter host cells is still incompletely understood. Recently, the type I transmembrane protein CD300lf was identified as the murine norovirus receptor, yet it is unclear how the virus capsid and receptor interact at the molecular level. In this study, we determined the X-ray crystal structure of the soluble CD300lf (sCD300lf) and the murine norovirus capsid protruding domain complex at a 2.05-Å resolution. We found that the sCD300lf-binding site is located on the topside of the protruding domain and involves a network of hydrophilic and hydrophobic interactions. sCD300lf locked nicely into a complementary cavity on the protruding domain that is additionally coordinated with a positive surface charge on sCD300lf and a negative surface charge on the protruding domain. Five of six protruding domain residues interacting with sCD300lf were maintained between different murine norovirus strains, suggesting that sCD300lf was capable of binding to a highly conserved pocket. Moreover, a sequence alignment with other CD300 paralogs showed that the sCD300lf-interacting residues were partially conserved in CD300ld but variable in other CD300 family members, consistent with previously reported infection selectivity. Overall, these data provide insights into how a norovirus engages a protein receptor and will be important for a better understanding of selective recognition and norovirus attachment and entry mechanisms.IMPORTANCE Noroviruses exhibit exquisite host range specificity due to species-specific interactions between the norovirus capsid protein and host molecules. Given this strict host range restriction, it has been unclear how the viruses are maintained within a species between relatively sporadic epidemics. While much data demonstrate that noroviruses can interact with carbohydrates, recent work has shown that expression of the protein CD300lf is both necessary and sufficient for murine norovirus infection of mice and binding of the virus to permissive cells. Importantly, the expression of this murine protein by human cells renders them fully permissive for murine norovirus infection, indicating that at least in this case, host range restriction is determined by molecular events that control receptor binding and entry. Defining the atomic-resolution interactions between the norovirus capsid protein and its cognate receptor is essential for a molecular understanding of host-range restriction and norovirus tropism.


Asunto(s)
Proteínas de la Cápside/metabolismo , Norovirus/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Animales , Sitios de Unión , Infecciones por Caliciviridae/virología , Línea Celular Transformada , Cristalografía por Rayos X , Gastroenteritis/virología , Especificidad del Huésped/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Dominios Proteicos , Células RAW 264.7 , Alineación de Secuencia
17.
J Neuroinflammation ; 15(1): 50, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463289

RESUMEN

BACKGROUND: Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology. METHODS: We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. RESULTS: We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible. CONCLUSION: The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route.


Asunto(s)
Barrera Hematoencefálica/virología , Líquido Cefalorraquídeo/virología , Plexo Coroideo/virología , Brotes de Enfermedades , Enterovirus Humano B/aislamiento & purificación , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/fisiología , Células Cultivadas , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Plexo Coroideo/ultraestructura , Enterovirus Humano B/metabolismo , Humanos , Filogenia , Especificidad de la Especie
18.
Mol Nutr Food Res ; 62(6): e1700679, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29336526

RESUMEN

Human milk oligosaccharides (HMOs) are diverse unconjugated carbohydrates that are highly abundant in human breast milk. These glycans are investigated in the context of exhibiting multiple functions in infant growth and development. They seem to provide protection against infectious diseases, including a number of poorly manageable viral infections. Although the potential mechanism of the HMO antiviral protection is rather broad, much of the current experimental work has focused on studying of HMO antiadhesive properties. HMOs may mimic structures of viral receptors and block adherence to target cells, thus preventing infection. Still, the potential of HMOs as a source for new antiviral drugs is relatively unexploited. This can be partly attributed to the extreme complexity of the virus-carbohydrate interactions and technical difficulties in HMO isolation, characterization, and manufacturing procedures. Fortunately, we are currently entering a period of major technological advances that have enabled deeper insights into carbohydrate mediated viral entry, rational selection of HMOs as anti-entry inhibitors, and even evaluation of individual synthetic HMO structures. Here, we provide an up-to-date review on glycan binding studies for rotaviruses, noroviruses, influenza viruses, and human immunodeficiency viruses. We also discuss the preventive and therapeutic potential of HMOs as anti-entry inhibitors and address challenges on the route from fundamental studies to clinical trials.


Asunto(s)
Antivirales/farmacología , Leche Humana/química , Oligosacáridos/farmacología , Infecciones por VIH/prevención & control , Humanos , Gripe Humana/prevención & control , Norovirus/efectos de los fármacos , Rotavirus/efectos de los fármacos , Ensamble de Virus
19.
J Phys Condens Matter ; 30(6): 064006, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29282349

RESUMEN

Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T = 1 capsids.

20.
PLoS Pathog ; 13(11): e1006636, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29095961

RESUMEN

Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Cápside/efectos de los fármacos , Modelos Moleculares , Norovirus/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Afinidad de Anticuerpos , Antivirales/química , Antivirales/metabolismo , Sitios de Unión de Anticuerpos , Unión Competitiva , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Reacciones Cruzadas , Cristalografía por Rayos X , Dispersión Dinámica de Luz , Epítopos , Cinética , Microscopía Electrónica de Transmisión , Norovirus/química , Norovirus/metabolismo , Norovirus/ultraestructura , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...